Moving Mesh Finite Element Methods Based on Harmonic Maps
نویسندگان
چکیده
This paper is devoted to the applications of a class of moving mesh nite element methods based on harmonic maps. We review some recent work of the authors on solving PDES, variational inequalities and optimal control problems by use of the moving mesh techniques.
منابع مشابه
Development of a Moving Finite Element-Based Inverse Heat Conduction Method for Determination of Moving Surface Temperature
A moving finite element-based inverse method for determining the temperature on a moving surface is developed. The moving mesh is generated employing the transfinite mapping technique. The proposed algorithms are used in the estimation of surface temperature on a moving boundary with high velocity in the burning process of a homogenous low thermal diffusivity solid fuel. The measurements obtain...
متن کاملMoving Mesh Methods in Multiple DimensionsBased on Harmonic Maps
In practice, there are three types of adaptive methods using the finite element approach, namely the h-method, p-method, and r-method. In the h-method, the overall method contains two parts, a solution algorithm and a mesh selection algorithm. These two parts are independent of each other in the sense that the change of the PDEs will affect the first part only. However, in some of the existing ...
متن کاملSimulation of thin film flows with a moving mesh mixed finite element method
We present an efficient mixed finite element method to solve the fourth-order thin film flow equations using moving mesh refinement. The moving mesh strategy is based on harmonic mappings developed by Li et al. [J. Comput. Phys., 170 (2001), pp. 562-588, and 177 (2002), pp. 365-393]. To achieve a high quality mesh, we adopt an adaptive monitor function and smooth it based on a diffusive mechani...
متن کاملSpectral Finite Element Method for Free Vibration of Axially Moving Plates Based on First-Order Shear Deformation Theory
In this paper, the free vibration analysis of moderately thick rectangular plates axially moving with constant velocity and subjected to uniform in-plane loads is investigated by the spectral finite element method. Two parallel edges of the plate are assumed to be simply supported and the remaining edges have any arbitrary boundary conditions. Using Hamilton’s principle, three equations of moti...
متن کاملA Moving Mesh Finite Element Algorithmfor Singular Problems in Two and ThreeSpace Dimensions
A framework for adaptive meshes based on the Hamilton–Schoen–Yau theory was proposed by Dvinsky. In a recent work (2001, J. Comput. Phys. 170, 562– 588), we extended Dvinsky’s method to provide an efficient moving mesh algorithm which compared favorably with the previously proposed schemes in terms of simplicity and reliability. In this work, we will further extend the moving mesh methods based...
متن کامل